A Robust Parallel Adaptive Mesh Refinement Software
Library for Unstructured Meshes

John Z. Lou, Charles D. Norton, and Tom Cwik
Jet Propulsion Laboratory
California Institute of Technology, Pasadena, CA 91009-8099

Abstract

The design and development of a software tool for performing paraliel adaptive mesh refinement in
unstructured computations on multiprocessor systems are described. This software tool can be used in
parallel finite element or parallel finite volume applications on triangular and tetrahedral meshes. It
contains a suite of well-designed and efficiently implemented modules that perform operations in a
typical P-AMR process. This includes mesh quality control during successive parallel adaptive mesh
refinement, typically guided by a local-error estimator, and parallel load-balancing. Our P-AMR tool
is implemented in Fortran 90 with a Message-Passing Interface (MPD library. supporting code effi-
ciency, modularity and portability. The AMR schemes, Fortran 90 data structures, and our parallel
implementation strategies are discussed in the paper. Test results of our software, as applied to
selected engineering finite element applications. will be demonstrated. Performance results of our
code on Cray T3E, HP/Convex Exemplar parallel systemns, and on a PC cluster (a Beowulf-class sys-
tem) will also be reported.

Keywords: parallel adaptive mesh refinement, unstructured mesh

1. Introduction

Adaptive mesh refinement (AMR) represents a class of numerical techniques that has demonstrated
great effectiveness for a variety of computational applications including fluid dynamics, structural
mechanics, electromagnetics, and semiconductor device modeling. However, the development of an
efficient and robust adaptive mesh refinement component for an application, particularly on unstruc-
tured meshes on multiprocessor systems, involves a level of complexity that is beyond the technical
domain of most computational scientists and engineers. The motivation for our work is to provide
an efficient and robust parallcl AMR library that can be easily integrated into unstructured parallel
applications.

Research on parallel AMR for unstructured meshes has been previously reported [2,10].
Most efforts are C++-based, and many realize that mesh quality control issues during successive
adaptive refinement is an active research topic. The features of our work include the design of a
complete Fortran 90 data structure set designed for parallel AMR on unstructured triangular and tet-
rahedral meshes, and a robust scheme for mesh quality control during the parallel AMR process.
We selected Fortran 90 for our implementation mainly because it provides adequate facilities for
parallel unstructured AMR development while simplifying interface concerns with scientific appli-
cation codes, many of which were developed in Fortran 77.

Mesh quality control is an important issuc that should be addressed in any AMR algo-
rithm. If adaptive refinement on a mesh is guided by a local-error estimator [1} and AMR is per-
formed repeatedly, a straightforward adaptive refinement scheme would usually result in mesh
clements with poor aspect-ratios. Different strategies have been proposed to improve the quality of
meshes generated from AMR. These include mesh smoothing after each adaptive refinement, selec-

[

tion of element refinement patterns based on the element shape, and other approaches [4]. We will present a
robust approach to addressing the issue of mesh quality control during successive mesh refinement, discuss
our implementation scheme for this technique and show some test results.

Our adaptive mesh refinement algorithm consists of two steps: a logical/conceptual step in which
the information necded to refine each element in the coarse mesh is constructed and stored, and a physical
refinement step in which the coarse mesh is actually refinement to produce a new mesh. The separation of
an adaptive refinement process into a logical refinement phase and a physical refinement phase offers sev-
eral advantages in a parallel AMR implementation. It makes the AMR code highly modular, and makes the
actual mesh retinement local to each element. It also makes it possible to perform paraliel load-balancing
by migrating only the coarse mesh instead of the refined mesh, thus with a much reduced communication
cost. Such a refinement strategy also makes it possible to confine the interprocessor communication to the
logical refinement phase. The code for this phase is small compared to the actual refinement phase which is
basically an operation local to each processor in the parallel AMR process.

2. Parallel mesh refinement

Our parallel AMR framework is composed of the following components: a parallel adaptive mesh refine-
ment module for triangular meshes and tetrahedral meshes, a parallel graph partitioner for partitioning
(weighted) graphs, and a mesh migration module that moves portions of a partitioned mesh to their
assigned processors. In a typical parallel AMR application initially the input mesh is randomly distributed
among the processors after loading from a disk file. This mesh is then partitioned by the graph partitioner
and redistributed among the processors, by the mesh migration module, according to the new partitioning.
After an application computation and a local-error estimate step, the mesh refinement module performs a
logical AMR on the distributed mesh based on the local-error estimate in each mesh element. Since the out-
come from the logical AMR indicates the distribution of computational load among processors for the
refined mesh, a load balancing decision can be made. The physical AMR is performed after the load-bal-
ancing step, where a new mesh is created by refining a subset of elements in the coarse mesh. As the last
step in the parallel AMR loop, the refined mesh may be checked for element quality, and an optional mesh
smoothing procedure can be performed. A control diagram of our parallel AMR algorithm is shown is Fig-
ure 1.

The logical refinement step uses an iterative procedure that traverses through elements of the
coarse mesh repeatedly to “define” a consistent mesh refinement strategy on the coarse mesh. The result of
the logical refinement is stored in the coarse mesh clement data structure which completely specifies
whether and how each element in the coarse mesh should be refined. Our adaptive refinement scheme is
based on “edge-marking™ for both triangular and tetrahedral meshes. It proceeds by marking (or logically
refining) element cdges wherever necessary, and the refinement pattern for each clement is determined by
the number of marked edges in that element.

To perform the logical refinement in parallel, we extend the serial iterative procedure so that after
traversing the element set for edge-marking, each processor updates the status of edges on mesh partition
boundaries by exchanging boundary edge information with its neighboring processors. The iteration stops
when no processor can find any more local edges (o mark in a particular sweep through its local elements.
Using this strategy, the serial mesh refinement module can be parallelized by only inserting a couple of
message-passing calls, with no change to the rest of the serial code.

One problem associated with repeated AMR is the deterioration of mesh element quality. Since

Initial mesh partitioning

Y

Application computation |.g—] Mesh improvement

Y Ty

N Estimated error N Mesh smoothing ?)
> tolerance?

'R i

Adaptive refinement Adaptive refinement
(logical phase) (physical phase)
C Load balancing? N Mesh repartition
and migration

Y T

Figure 1. Parallel AMR process for unstructured meshes

4 5 4 5
Figure 2. An example of mesh quality control. The original refinement (left) on the coarse ele-
ment 2-3-4 is modified (right) if any of the two elements in 2-3-4 need to be further refined
cither due to local errors or because their neighboring elements in 1-2-3 are to be further refined.

clements in the mesh are not uniformly refined (in order to preserve the consistency of the global mesh) the
aspect-ratio of partially refined elements could degrade rapidly as adaptive refinement proceeds, especially
for the three-dimensional tetrahedral meshes. Mesh smoothing algorithms have been proposed [3.7] 1o
improve elements shape either locally or globally. Most mesh smoothing schemes tend to change the struc-
ture of the input mesh to achieve the “smoothing effect” by rearranging nodes in the mesh. The changes
made by a smoothing scheme, however, could modify the desired distribution of element density produced
by the AMR procedure. With a maximally refined mesh, applying a smoothing operation over the entire
mesh is probably the only choice to improve the mesh quality. On the other hand, it is possible to prevent
the mesh quality from further degradation during repeated adaptive refinement. The idea is to change the
original refinement on a partially refined element if any of the children of that element need to be further
refined in the next refinement. Figure 2 illustrates an example of the situation.

To simplify the implementation of such a feature in a parallel adaptive refinement procedure, we
require that the mesh partitioner does not separate the twin clements (2-3-4) onto two processors, allowing
the subsequent refinement operation to remain local in each processor. By incorporating this quality control

capability into the AMR procedure, the final mesh successive AMR stages will have an acceptable quality
lcvel if the initial input mesh does.

3. Fortran 90 implementation

Fortran 90 modernizes traditional Fortran 77 scientific programming by adding many new features. These
features allow programs to be designed and written at a higher level of abstraction, while increasing soft-
ware clarity and safety without sacrificing performance. Fortran 90’s capabilities encourage scientists to
design new kinds of advanced data structures supporting complex applications. (Developing such applica-
tions, like P-AMR, might not have been considered by Fortran 77 programmers since development would
have been too complex.) These capabilities extend beyond the well-known array syntax and dynamic mem-
ory management operations.

Derived-Types, for instance, support user-defined types created from intrinsic types and previ-
ously defined derived-types. Dynamic memory management in the form of pointers, and a variety of
dynamic arrays, are also useful in data structure design. Many of the new Fortran 90 data types know infor-
mation about themselves, such as their size, if they have been allocated, and if they refer to valid data. One
of the most significant advances is the module, that supports abstraction modeling and modular code devel-
opment. Modules allow routines to be associated with derived types defined within the module. Module
components can be public and/or private leading to the design of clean interfaces throughout the program.
This is very useful when multiple collaborators are contributing to the design and development of large
projects. Other useful capabilities include function and operator overloading, generic procedures, optional
arguments, strict type checking, and the ability to suppress the creation of implicit variables. Fortran 90 is
also a subset of HPF and, while message passing programming using MPI is possible with Fortran 90, this
link to HPF simplifies extensions to data parallel programming. Both Fortran 90 and HPF are standards
supported throughout industry which helps promote portability among compilers and machines.

One of the major benefits of Fortran 90 is that codes can be structured using the principles of
object-oriented programming [6,9]. While Fortran 90 is not an object-oriented language, this methodology
can be applied with its new features. This allows the development of a PAMR code where interfaces can be
defined in terms of mesh components, yet the internal implementation details are hidden. These principles
also simplify handling interlanguage communication, sometimes necessary when additional packages are
interfaced to new codes. Using Fortran 90’s abstraction techniques, for example, a mesh can be loaded into
the system, distributed across the processors, the PAMR internal data structure can be created, and the mesh
can be repartitioned and migrated to new processors (all in parallel) with a few simple statements as shown
in Figure 3.

A user could link in the routines that support parallel adaptive mesh refinement then, as long as
the data format from the mesh generation package conforms to one of the prespecified formats, the capabil-
ities required for PAMR are available. We now describe the Fortran 90 implementation details that make
this possible.

3.1 Fundamental Data Structures

Automated mesh generation systems typically describe a mesh by node coordinates and connectivity. This
is insufficient for adaptive mesh refinement. Hierarchical information, such as the faces forming an ¢le-
ment, the edges bounding each face, or elements incident on a common node is also useful. Additionally,
large problems require the data to be organized and accessible across a distributed memory parallel com-
puting system. These issues can be addressed by the creation of appropriate PAMR data structures.

PROGRAM pamr
use mpi_module ; use mesh_module ; use misc_module
implicit none

integer :: lerror
character{len=8) :: input_mesh_file
type (mesh) :: in_mesh

call MPI_INIT{ ierror)
input_mesh_file = mesh_name{ iam)
call mesh_create_incore(in_mesh, input_mesh_file)
call mesh_repartition(in_mesh)
call mesh_visualize(in_mesh, "visfile.plt")
call MPI_FINALIZE(ierror)
END PROGRAM pamr

Figure 3. A main program with selected PAMR library calls.

The major data structure is the description of the mesh. While a variety of organizations are possi-
ble, where trade-offs between storage and efficiency of component access must be decided, most descrip-
tions include elements, faces, edges, and nodes. These are related hierarchically where components
generally contain references to other components that comprise its description. These references can be bi-
directional, an edge may have references to its two node end points and references to the faces it helps
form. However, some of these details can be omitted from the structure by using a combination of good
data structure designs and efficient recomputation of the required information.

Basic mesh definition

Fortran 90 modules allow data types to be defined in combination with related routines. In our system the
mesh is described, in part, as shown in Figure 4. In two-dimensions, the mesh is a Fortran 90 object con-
taining nodes, edges, clements, and reference information about non-local boundary elements (r_indx).
These components are dynamic, their size can be determined using Fortran 90 intrinsic operations. They
are also private, meaning that the only way to manipulate the components of the mesh are by routines
defined within the module. Incidentally, the remote index type r_indx (not shown) is another example of
encapsulation. Objects of this type are defined so that they cannot be created outside of the module at all. A
module can contain any number of derived types with various levels of protection, useful in our mesh data
structure implementation strategy.

All module components are declared private, meaning that none of its components can be refer-
enced or used outside the scope of the module. This encapsulation adds safety to the design since the inter-
nal implementation details are protected, but it is also very restrictive. Therefore, routines that must be
available to module users are explicitly listed as public. This provides an interface to the module features
available as the module is used in program units. Thus, the statement in the main program from Figure 3:

call mesh_create_incore(in_mesh, input_mesh_file)
is a legal statement since this routine is public. However the statement:
element_id = in_mesh%elements (10)%id

is illegal since the “clements” component of in_mesh is private to the derived type in the module.

The mesh_module uses other modules in its definition, such as the mpi_module and the
heapsort_module. The mpi_module provides a Fortran 90 interface to MPI while the heapsort_module is
used for efficient construction of the distributed mesh data structure. The routines defined within the con-

6

module mesh_module
use mpi_module ; use heapsort_module
implicit none

private
public :: mesh_create, mesh_create_incore, mesh_repartition, &
mesh_vwvisualize, edge_migration, node_migration

integer, parameter :: mesh_dim=2, nodes_=3, edges_=3, neigh_=3
type element

private

integer :: id, nodeix(nodes_), edgeix({edges_), neighix(neigh_)
end type element
type mesh

private

type(node), dimension{:), pointer :: nodes

typel{edge), dimension(:), pointer :: edges

type(element), dimension(:), pointer :: elements

typel(r_indx), dimension(:}, pointer :: boundary_elements
end type mesh
contains

subroutine mesh_create_incore(this, mesh_file)

type {(mesh), intent{inout) :: this

character (len=*), intent(in) :: mesh_file

! details omitted. ..
end subroutine mesh _create_incore
end module mesh_module

Figure 4. Skeleton view of mesh_module components.

tains statement, such as mesh_create_incore(), belong to the module. This means that routine interfaces,
that perform type matching on arguments for correctness, are created automatically. (This is similar to
function prototypes in other languages.)

Distributed structure organization

When the PAMR mesh data structure is constructed it is actually distributed across the processors of the
parallel machine. This construction process consists of loading the mesh data, either from a single proces-
sor for parallel distribution (in_core) or from individual processors in parallel (out_of_core). A single
mesh_build routine is responsible for constructing the mesh based on the data provided. Fortran 90 routine
overloading and optional arguments allow multiple interfaces to the mesh_build routine, supporting code
reuse. This is helpful because the same code that builds a distributed PAMR mesh data structure from the
initial description can be applied to rebuilding the data structure after refinement and mesh migration. The
mesh_build routine, and its interface, is hidden from public use. Heap sorting techniques are also applied in
building the hierarchical structure so that reconstruction of a distributed mesh after refinement and mesh
migration can be performed from scratch, but efficiently.

The main requirement imposed on the distributed structure is that every element knows its neigh-
bors. Local neighbors are easy to find on the current processor from the PAMR structure. Remote neighbors
are known from the boundary_elements section of the mesh data structure, in combination with a neighbor
indexing scheme. When an element must act on its neighbors the neighbor index structure will either have a
reference to a complete description of the local neighbor element or a reference to a processor_id/global_id
pairing. This pairing can be used to fetch any data required regarding the remote element neighbor. (Note
that partition boundary data, such as a boundary face in three-dimensions, is replicated on processor bound-

aries.) One of the benefits of this scheme is that any processor can refer to a specific part of the data struc-
ture 1o access its complete list of non-local elements.

Figure 4 showed the major components of the mesh data structure, in two-dimensions. While For-
tran 90 fully supports linked list structures using pointers, a common organization for PAMR codes, our
system uses pointers to dynamically allocated arrays instead. There are a number of reasons why this orga-
nization is used. By using heap sorting methods during data structure construction, the array references for
mesh components can be constructed very quickly. Pointers consume memory, and the memory references
can become “unorganized”, leading to poor cache utilization. While a pointer-based organization can be
useful, we have ensured that our mesh reconstruction methods are fast enough so that the additional com-
plexity of a pointer-based scheme can be avoided.

Interfacing among data structure components

The system is designed to make interfacing among components very casy. Usually, the only argament
required to a PAMR public system call is the mesh itself, as indicated in Figure 3. There are other interfaces
that exist however, such as the internal interfaces of Fortran 90 objects with MPI and the ParMeTiS parallel
partitioner |8] which written in the C programming language.

Since Fortran 90 is backward compatible with Fortran 77 it is possible to link to MPI for interlan-
guage communication, assuming that the interface declarations have been defined in the mpi.h header file
properly. While certain array constructs have been useful, such as array syntax and subscctions, MPI does
not support Fortran 90 directly so array subsections cannot be (safely) used as parameters to the library rou-
tines. Our system uses the ParMeTiS graph partitioner to repartition the mesh for load balancing. In order
to communicate with ParMeTiS our system internally converts the distributed mesh into a distributed
graph. A single routine interface to C is created that passes the graph description from Fortran 90 by refer-
ence. Once the partitioning is complete, this same interface returns from C an array that describes the new
partitioning to Fortran 90. This is then used in the paraliel mesh migration stage to balance mesh compo-
nents among the processors.

subroutine mesh_repartition(this)
type (mesh), intent(inout} :: this
! statements omitted. ..
call PARMETIS (mesh_adi, mesh_repart, nelem, nproc, iam) ! C call

call mesh_build(this, new_mesh_repart=mesh_repart)
end subroutine mesh_repartition

Figure 5. Fortran 90/C interface to mesh repartitioner and mesh migration routines

3.2 Parallel Mesh Migration and Load Balancing

Once the mesh is refined load imbalance is introduced, due to the creation of new elements in regions with
high error estimates. As a result, the clements must be repartitioned and migrated to the proper processors
to establish a balanced load. The ParMeTiS graph partitioner is used to compulte the new partitioning. Ele-
ments are weighted based on the refinement level, the dual-graph of the mesh is created, and the ParMeTiS
partitioner computes a new partitioning based on the weighted graph. The weighted graph attempts to find
a partitioning that minimizes the movement of elements and the number of components on partition bound-
aries (to minimize communication). Our system, in order to minimize communication even turther, actually
gives ParMeTiS a mesh that only indicates refinement, where the new elements have not yet been created.
Once this (coarse) mesh is migrated then the actual refinement is performed after element migration.

Interfacing among C and Fortran 90 for mesh migration

ParMeTiS only returns information on the mapping of elements to (new) processors, it does not actually
migrate clements across a parallel system. Our parallel mesh migration scheme reuses the efficient
mesh_build() routine to construct the new mesh from the ParMeTiS repartitioning. During this mesh_build
process the element information is migrated according to this partitioning.

As seen in Figure 5, information required by the ParMeTiS partitioner is provided by calling a Fortran 90
routine that converts the mesh adjacency structure into ParMeTiS format (hidden). When this call returns
from C, the private mesh_build() routine constructs the new distributed mesh from the old mesh and the
new repartitioning by performing mesh migration. Fortran 90 allows optional arguments (o be selected by
keyword. This allows the mesh_build routine to serve multiple purposes since a keyword can be checked to
determine if migration should be performed as part of the mesh construction process:
subroutine mesh_build(this, mesh_file, new_mesh_repart, in_core}
integer, dimension(:), intent(in), optional :: new_mesh_repart
logical, intent(in), optional :: in_core
! statements omitted...
if (present (new_mesh_repart)) then
! perform mesh migration. ..
end if
! (re)construct the mesh independent of input format...
end subroutine mesh_build
This is another way in which the new features of Fortran 90 add robustness to the code design. The way in
which the new mesh data is presented, either from a file format or from a repartitioning, does not matter.
Once the data in organized in our private internal format the mesh can be reconstructed by code reuse.

Mesh migration communication algorithm

The mesh is migrated in stages, based on the component type, for safety. In two-dimensions, mesh edges,
nodes, and node coordinates are transported to new processors (if necessary) in that order. Since the mesh is
reconstructed by the mesh_build() routine, information regarding the boundaries and component ownership
does not need to be included in the migration stage.

The parallel communication algorithm for migration of mesh data is straightforward. Processors
first organize data that will remain local. Then, data that must be migrated is sent continually to processors
that expect the data. While the sending is performed, processors probe for incoming messages, that are
expected, and receive them immediately upon arrival (the probe is non-blocking). Probing has the added
benefit that a processor can allocate storage for an incoming message before the message is actually
received. When this process is completed, processors check to see if there are any remaining receives, pro-
cesses them if necessary, and the migration completes. At this point, the mesh is reconstructed with the new
data.

The ParMeTiS library determines where elements must be migrated, using a multi-level diffusion
algorithm. In Figure 6 we see a mesh with a random distribution of elements and the repartitioning after
mesh migration using ParMeTiS.

3.3 Performance

The performance of the communication intensive parts of the system, such as mesh refinement, mesh
migration, mesh loading, and mesh construction are of interest. The quality of the partitioning produced by

Figure 6. lustration of ParMeTiS repartitioning on Cray T3E using 8 processors.

the ParMeTiS mesh partitioner, as well as its performance are also important. These features will be charac-
terized and included in the final version of this abstract.

The element quality due to successive adaptive refinement could degrade rapidly to make the
resulting mesh practically useless for many numerically applications. We therefore have incorporated a
technique that improves the adaptive refinement process. Figure 7 shows a test case illustrating how narrow
“green-refined” elements have been replaced by elements with better aspect ratios. (The improved AMR
code will be applied to the waveguide filter and other examples shown here in our final paper).

AN .
NV, B

M .ol NRERE
Figure 7. Ilustration of mesh quality control during repeated adaptive refinement.

4. Applications

We now present some results from applications of our parallel AMR tool to a few test probiems on (riangu-
lar and tetrahedral meshes. Figure 6 shows a parallel partitioning and migration of a triangular finite-cle-
ment mesh in a waveguide filter domain. The input mesh is read in from a disk file, and initially distributed
in a random fashion on eight Cray T3E processors. The mesh is concurrently partitioned using the ParMe-
TiS routine. The parallel mesh migration module is then used to move subpartitions to their destination pro-
CeSSorSs.

Our AMR module is tested in a finite-clement simulation of electromagnetic wave scattering in
the above waveguide filter [5]. The problem is to solve Maxwell’s equation for the electromagnetic (EM)
fields in the filter domain. A local-error estimate procedure based on the Element Residue Method (ERM)
[1]is used in combination with the AMR technique to adaptively construct an optimal mesh for the prob-
lem solution. Figure 8 shows a few snapshots of the mesh in the AMR solution process. The color and den-
sity distribution of mesh elements in the figure reflect the (estimated) error distribution in the computed
fields. Another application of the AMR module is to an EM simulation in a quantum well infrared photode-
tector (QWIP), as shown in Figure 9.

Figure 10 shows a test of our AMR module on a tetrabedral mesh. The initial tetrabedral mesh

10

A
ST,

L T,

. fa"&".&%\.ﬁ&:ﬁ

Figure 8. Adaptive finite-element solution in a waveguide filter. Adaptive refine-
ment 1s guided by a local-error estimate procedure based on local residuals.

was generated in a U-shaped domain with 120 clements. Mesh elements in two spherical subregions, indi-
cated by the circles in the top initial mesh, are chosen for adaptive refinement. The radius of the refining
spheres is reduced by 20% after each adaptive refinement. The color image at the bottom of Figure 10 is the
resulting mesh after three successive adaptive refinements, which has about 2500 elements.

Figure 9. Adaptive finite-element simulation in a quantum well infrared photodetector for
long-wavelength infrared radiation. The adaptively refined mesh, computed magnetic field
relative to an incident plane wave, and the wave field on the mesh are shown respectively.

5. Conclusion

We have presented a complete framework for performing parallel adaptive mesh refinement in unstructured
applications on multiprocessor computers. A robust parallel AMR scheme and its implementation with
mesh quality control, as well as a load-balancing strategy in parallel AMR, are discussed. Our implementa-
tion of the parallel AMR software package in Fortran 90 and MPI, including the data structure and inter-
faces between different modules, are also discussed. A few application examples using our developed AMR
modules are demonstrated. Parallel performance on several multiprocessor systems will be given in our

11

final paper.

Figure 10. Adaptive refinement on a three-dimensional tetrahedral mesh. The ini-
tial mesh (top) has 128 elements, and two subregions are chosen arbitrarily to be
refined. The mesh after adaptive refinements (bottom) has about 2,500 elements.

6. References

[1] M. Ainsworth, J. T. Oden. A Procedure for a Posteriori error Estimation for A-p Finite Element
Methods.”” Computer Methods in Applied Mechanics and Engineering, 101 (1972) 73-96.

[2] R. Biswas, L. Oliker, and A. Sohn. “Global Load-Balancing with Parallel Mesh Adaption on Dis-
tributed-Memory Systems.” Proceedings of Supercomputing ‘96, Pitisburgh, PA, Nov. 1996.

[3] E. Boender. “Reliable Delaunay-Based Mesh Generation and Mesh Improvement.” Communica-
tions in Numerical Methods in Engineering, Vol. 10, 773-783 (1994).

[4] Graham F. Carey, “Computational Grid Generation, Adaptation, and Solution Strategics”. Series in
Computational and PHysical Processes in Mechanics and Thermal Science. Taylor & Francis, 1997,

{51 T. Cwik, J. Z. Lou, and D. S. Katz, “Scalable Finite Element Analysis of Electromagnetic Scattering
and Radiation.” to appear in Advances in Engincering Software, V. 29 (2), March, 1998

[6] V. Decyk, C. Norton, and B. Szymanski. Expressing Object-Oriented Concepts in Fortran 90. ACM
Fortran Forum, vol. 16, num. 1, April 1997.

[7] L. Freitag, M. Jones, and P. Plassmann. “An Efficient Parallel Algorithm for Mesh Smoothing.”
Tech. Report, Argonne National Laboratory.

[8] G. Karypis, K. Schlocgel, and V. Kumar. “ParMeTiS: Parallel Graph Partitioning and Sparse Matrix
Ordering Library Version 1.07. Tech. Rep., Dept. of Computer Science, U. Minnesota, [997.

[9] C. Norton, V. Decyk, and B. Szymanski. High Performance Object-Oriented Scientific Program-
ming in Fortran 90. Proc. Eighth SIAM Conf. on Parallel Processing for Sci. Comp., Mar. 1997
(CDROM).

[10] M. Shephard, J. Flaherty, C. Bottasso, H. de Cougny, C. Ozturan, and M. Simone. Parallel auto-
matic adaptive analysis. Parallel Computing 23 (1997) pg. 1327-1347.

